HEATSTORE WEBINAR SERIES

HOW TO DEVELOP UNDERGROUND THERMAL ENERGY STORAGE (UTES) PROJECTS? Learnings from the European HEATSTORE project

Host: TNO, The Netherlands heats ore GEOTHERMICA

7, 14, 21, 28 Sept. and 5, 12 Oct. 2021 | all 15-16 h (CEST)

HEATSTORE WEBINAR SERIES 2021

All webinars are at 15 – 16 h CEST

Tuesday 7 Sept. (Holger Cremer, TNO): Challenges in Underground Thermal Energy Storage (UTES)

Tuesday 14 Sept. (Thomas Driesner, ETH Zurich): Advances in subsurface characterization and simulation

Tuesday 21 Sept. (Koen Allaerts, VITO): Integrating UTES and DSM in geothermal district heating networks

Tuesday 28 Sept. (Florian Hahn, Fraunhofer IEG): Abandoned coal mines – promising sites to store heat in the underground

Tuesday 5 Oct. (Bas Godschalk, IF Technology): The ECW Energy HT-ATES project in the Netherlands

Tuesday 12 Oct. (Joris Koornneef, TNO): The role of UTES in the future EU energy system – a moderated table discussion.

Register on www.heatstore.eu

HEATSTORE

- HEATSTORE = GEOTHERMICA ERA-NET co-fund project
- 16.3 M€ | 23 partners in 9 EU countries
- 6 demonstration sites, 8 case studies.
- Coordination: TNO Netherlands Organization for Applied Scientific Research)

HEATSTORE – 5 Oct. 2021 The ECW Energy HT-ATES project in the Netherlands

- Bas Godschalk (IF Technology): Convenor & Opening
- Wim Bos (ECW Energy): Why ECW is applying a HT-ATES?
- Peter Oerlemans (IF Technology): The Dutch HT-ATES project: hydrogeological & legal challenges with developing a full-scale HT-ATES system
- Nico Franco Pinto (IF Technology): The Dutch HT-ATES project: design & realisation challenges with developing a full-scale HT-ATES system

GEOTHERMICA

HIGH TEMPERATURE UNDERGROUND THERMAL ENERGY STORAGE IN A GREENHOUSE AREA MIDDENMEER IN THE NETHERLANDS

💏 if

Bas Godschalk Peter Oerlemans Nico Franco Pinto

Webinar Heatstore, October 5th, 2021

PETER OERLEMANS

HEATSTORE OVERVIEW ETIP

GEOTHERM

CONTEXT FOR HT-ATES DEVELOPMENT IN NL

LT-ATES (< 25 °C)

- Widely applied in NL (>30 years)
- Sustainable heating and cooling
- Huge potential in Dutch subsurface (<500 mbgs)
- Workflows available in all project phases:
 - Permit, Design & Realization, Operation
- Over 2,000 LT-ATES systems

HT-ATES

- Legally similar to LT-ATES
- Builds forth LT-ATES experience and knowledge
- Fits the existing workflows,
- But: High Temperature brings challenges
 - Legal
 - Design

WINDOW, 2020

LEGAL CHALLENGES

Legal Framework for HT-ATES:

The Water Law

- < 500 mbgs</p>
- ATES
- Provinces issues permits
- LT-ATES, an assessment framework is available

HEATSTORE OVERVIEW ETIP				
			/IE\A/	CTID
	UNE '	UVER		E I IF

	0 -		
depth(m-mv)	100	Water Law < 500 m-mv	
	200 -	Competent authority: Province	
	300 -	General legislation for notable water and ATES	
	400 -	General legislation for potable water and ATES	
	500		
		Mining Law > 500 m-mv	
	600		
	700 -	Competent authority: Ministry of Economic affairs and Climate	
	800	General legislation for mining activities	
	900 -	Scheral registation for mining activities	
	1.000 -	Higher risk resulting in more safety requirements and higher cost	
	•		

LEGAL CHALLENGES

LT-ATES: Assessment Framework exists: the 'BUM'

- Consistent and streamlined permit application process
- Important driver for widespread implementation of LT-ATES systems

Legal differences between LT and HT ATES:

- Temperatures > 25 °C
- Net heat addition to subsurface

LEGAL CHALLENGES

General criteria of the Water Law:

- Interest of the protection of the subsurface is not violated _____
- Effective use of ATES in the subsurface

No specific Assessment Framework for HT-ATES exists (yet)

- Permitting process is complex and outcome is uncertain
- Barrier for HT-ATES initiators in NL

 \rightarrow More specific assessment criteria are needed for HT-ATES —

Groundwater quality, stakeholders Recovery efficiency

HT-ATES AT ECW IN MIDDENMEER

- How to realize a HT-ATES system?
- Geothermal & HT-ATES concept in Middenmeer
- Timeline at ECW
- Test drilling results (2019): Addressing Hydrogeological questions

HOW TO REALIZE A HT-ATES WELL SYSTEM?

Step I:"Standing on the shoulders of giants"

 \rightarrow Use all knowledge and experiences available from earlier HT-ATES projects

Lessons Learned (Heatstore WPI)

- 'Bigger is Better'
- Test drilling before designing the system
- Succesful integration subsurface & surface facilities
- Material selection
- Extensive legal procedure

GEOTHERMAL & HT-ATES IN MIDDENMEER

TIMELINE AT ECW

2018	• HT-ATES permit
	• Test Drilling
2019	Well Design
2020	Well Realization
	Testing Phase
2021	 Operation Started

HEATSTORE OVERVIEW ETIP

2019: TEST DRILLING

Research questions

- Presence of storage aquifer
- Properties of aquifer
- Max flow rate

Actions

- Drilling to 471 mbgs
- Tests and measurements

Results

- Detailed information on subsurface
- Input for design

2019: TEST DRILLING

Results

- 2 aquifers found:
 - Aquifer 4: 360 383 mbgs \rightarrow 23 m thick
 - Aquifer 5: 424 463 mbgs \rightarrow 39 m thick

HEATSTORE OVERVIEW ETIP

2019:TEST DRILLING

Results

- Groundwater analysis:
 - Saline groundwater
 - Aquifer 5: high gas (CH₄) content

A 🔶 A

SL1

SL2

Proefboring

WVP1

WVP2

WVP3

-50-

-100-

-150-

2019:TEST DRILLING

Results

Max flow rate was higher in Aquifer 4

Lower sand production in Aquifer 4

2019: TEST DRILLING

Results - Temperatures

- Aquifer 4: 15,5 °C
- Aquifer 5: 16,5 °C

Crossflow from Aq5 \rightarrow Aq4

<u>.</u>

AX

- Aquifer 4 was chosen for HT-ATES:
 - Higher flow rates
 - Lower risk of sand production
 - Lower gas pressure (methane)
 - Best recovery efficiency

A design was made for HT-ATES in Aquifer 4

HT-ATES DESIGN CHOICES

- I Doublet in Aquifer 4
 - Hot well: 85 °C
 - 'Cold' well: 30 °C
- Test drilling \rightarrow Monitoring well
 - Groundwater sampling
 - Temperature development

HT-ATES AT ECW: REALIZED SITUATION

CURRENT STATUS & FUTURE PLANNING

Current Status

- Reference measurements were taken in March 2021
- May 2021: Testing Phase: Successful
- June 2021: Start of charging heat: Successful
- Temperature data interpretations (TNO, IF, ECW)

Planning

- Groundwater sampling
- November 2021: Heat recovery

if 🔊

GEOTHERMICA

NTROGEN

heatstore

THANK YOU FOR YOUR ATTENTION

www.heatstore.eu

HEATSTORE (170153-4401) is one of nine projects under the GEOTHERMICA – ERA NET Cofund aimed at accelerating the uptake of geothermal energy by 1) advancing and integrating different types of underground thermal energy storage (UTES) in the energy system, 2) providing a means to maximise geothermal heat production and optimise the business case of geothermal heat production doublets, 3) addressing technical, economic, environmental, regulatory and policy aspects that are necessary to support efficient and cost-effective deployment of UTES technologies in Europe. The three-year project will stimulate a fast-track market uptake in Europe, promoting development from demonstration phase to commercial deployment within two to five years, and provide an outlook for utilisation potential towards 2030 and 2050.

The GEOTHERMICA project is supported by the European Union's HORIZON 2020 programme for research, technological development and demonstration under grant agreement No 731117.